
,.O
O

I

Z
I--

<
¢1)

<
Z

NASA TN D-1106

TECHNICAL

D-II06

NOTE

ELEMENTS AND PARAMETERS OF THE OSCULATING ORBIT

AND THEIR DERIVATIVES

By Wilbur F. Dobson, Vearl N. Huff, and Arthur V. Zimmerman

Lewis Research Center

Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON January 1962





IY

OG
O
OG

!

CONTENTS

Page

SUMMARY ............................... i

INTRODUCTION .......................... i

ANALYSIS .............................. 2

Equations of Motion ...................... 2

General Formula for a Lagrangian Bracket ............. 7

Evaluation of Lagrangian Brackets ................. 7

Derivatives of Elements in Terms of Disturbing i_unctions of

Elements ............................ 8

Disturbing Functions of Elements in Terms of C_nponents of Dis-

turbing Acceleration ...................... 9

RESULTS ............................... i0

Alternate Components of Disturbing Acceleration .......... ii

Elimination of (t - tp) ...................... Ii

Derivatives of Alternate Orbital Parameters ............ 14

Semilatus rectum ........................ 14

Pericenter radius ........................ 14

Mean anomaly .......................... 14

True anomaly .......................... 15
Orbital Element Relations for a Circular Orbit .......... 16

True anomaly .......................... 16

Argument of pericenter ..................... 17

Time of pericenter passage ................... 17
Derivatives of Orbital Parameters in a Circular Orbit ....... 17

Semilatus rectum and semimajor axis ............... 17

Eccentricity and radius of pericenter .............. 17

Argument of pericenter ..................... 17

Time of pericenter passage ................... 18

Mean anomaly .......................... 19

True anomaly .......................... 19

Application of derivatives for circular orbits ......... 20

CONCLUDING REMARKS ......................... 20

APPENDIXES

A - SYMBOLS ............................ 21

B - WHITTAKiR'S DERIVATION OF THE GENERAL FORMULA FOR A

LAGRANGIANBRACK_T ..................... 25

C - DISTURBING FUNCTIONS OF TN]E EL_S IN TERMS OF COMPONENTS

OF THE DISTURBING ACCELERATION ............. 50



ii

Page
REFERENCES ............................. 34

TABLES

I - EQUATIONS FOR TH_ _JO-BODY ORBIT .............. 35

II - DERIVATIVES OF ORBITAL ELEMENTS AND PARAMETERS ....... 42

III - COMPONENTS OF THE DISTURBING ACCELERATION ......... 46

IV - QUALITATIVE EFFECTS OF THE DISTURBING ACCELERATION

COMPONENTS ........................ 4 7

FIGURES .............................. 48



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-II06

O.]
o
O,]

!

ELEM_I{TS AE_ P_TLRS OF T}_ 0SCULATII{G ORBIT

Ag[D THEIR DERIVATIVES

By Wilbur F. Dobson 3 Vearl N. HRff;

and Arthur V. Zimmerman

SUMMARY

The analysis determines the time derivatives of the conic-section

orbital elements in a disturbed orbit by perturbation methods. Integra-

tion of any of the several resulting systems of s_x first-order linear

differential equations by n_merical methods can be a useful tool for the

solution of problems in orbital mechanics.

Equations for the two-body orbit are also summarized in a convenient

manner.

INTRODUCTION

The recent emphasis on space-flight _rajectcry calculations and the

use of electronic computing machinery have combired to increase the in-

terest in the perturbation methods for studying problems in celestial

mechanics. This is especially true of the methods that leave the dis-

turbing function undeveloped and require numerical integration to com-

plete the solution. Previously_ the amount of numerical work required

rendered precision calculations by these latter methods impractical. It

is the purpose of this report to examine and extend some of the previous

work in perturbation theory to secure forms that may be better adapted to

n<_erical integration; at least for specific problems.

The basic work in developing expressions for the derivatives of the
orbital elements must be credited to various notable contributors in

dyn_nical astronomy. Perturbation theory was be_un by Euier in 1748.

However_ the first complet_ development was presented by Lagrange in
17_2.

The perturbation method summarized herein is formulated in terms of

Lagrangian brackets. Numerous methods for evaluating the brackets have

been published. The indirect method of evaluating the brackets used
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herein is attributed to Whittaker 3 as reported by Smart (ref. i). The
characteristic of the indirect methods is that the work begins with the
derivation of a general expression for a Lagrangian bracket_ from which
all brackets are easily evaluated.

For convenience, the present report gives alternative forms of the
perturbation derivatives; and, by using the results presented in the
tables, manyothers are obtainable. The extension to the case of circu-
lar orbits has been included. A collection of useful two-body equations
is also given in table I without derivation.

The procedure indicated for the reduction of the three second-order
linear differential equations of motion in rectangular coordinates to
six first-order linear differential equations in orbital elements follows
the pattern_ but is revised from that given in Moulton (ref. 2). The
analysis has been further generalized by avoiding the requirement that
the perturbation function be a potential function. This extension shows
that the results are valid for thrust and drag, which are not potential-
type functions. Another revision concerns the determination of the dis-
turbing functions in terms of the elements that define the size, shape,
and position in the orbit. This procedure given herein is believed to
be more direct than that given elsewhere (refs. i and 2).

!
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ANALYSIS

Equations of Motion

Consider the motion of an object subject to an inverse-square cen-

tral gravitational acceleration directed toward the origin, and also sub-

ject tosmaller disturbing accelerations that can be expressed as func-

tions of the variables and constants of the problem. Let OX, OY, OZ in

figure i be the coordinate axes in a noninertial Cartesian system having

its origin located at the center of the mass M o. The equations of mo-

tion of the object are then as follows from application of Newton's

second law to the problem (e.g._ refs. i and 2):

d2x +_x

dt 2 r3 Ax

d2y + r_-_3= Adt 2 Y

d2z +_z Az
dt 2 r 5

(i)
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In the notation adopted hereinafter, equation (i)will be indicated as

dE
_.__x+ #x
dt 2 %--5= ix, x _ y,z (l)

where x-, y_z indicates that separate equations in x, y, and z are

included to complete the set. All symbols are defined in appendix A.

_x/r 3 is due to central gravitational attraction_The acceleration term

where

= k2(% + m) (2)

(k2 is the gravitational constant_ M o is the mass of the body at the

origin, and m is the object's mass). The compoaents of the disturbing

acceleration that disturb the two-body orbit are Ax_ x _ y_z in equa-

tions (i) and may be written as

n

2c )_ xi

ig'Ax = fx - ks M i _._" +
r i

_=I

x - y,_ (3)

<<here H i is the mass of the ith disturbing body_ n is the number of

gravitating bodies excluding the central body_ _ is defined by

= (x-_i) 2 + (y-_i)_ + (_ - _i)2 (_)

and fx is the component of the disturbing acceleration along 0X due

to all other forces. For example; these may include propulsion thrust_

aerodynamic forces; and forces due to the oblateness of M o. No restric-

tion need be placed on the form of disturbing acceleration except that

it be sufficiently well defined to permit integTsZion.

Equations (I) may be integrated directly by numerical methods. How-

ever; in many cases larger intervals may be used in numerical integra-

tion, or approximate closed-form solutions can be obtained if the equa-

tions are expressed in tem_s of perturbations of orbital elements.

The perturbation theory uses as a reference an orbit having no per-

turbations. If the disturbing acceleration is assumed to be zero, the

differential equations become

dZx + _x 0, x y,z (5)
dt 2 r3
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The solution of equations (5) is readily obtained and is found to be a
conic section. The motion of the object can be represented by six or-
bital elements obtained from the constants of integration of equations
(5). Table I gives a collection of two-body equations relating selected
orbital elements and parameters. Although it is not possible to express
the Cartesian positions and velocities explicitly in terms of the orbital
elements, the solutions of equations (5) maybe indicated as

x : X(Cl, c2, c3, c_, c5, c6, t), x _ y,z (6a)

= _(Cl, c2, c3, c4, c5, c6, t), x y,z (Gb)

where Cl, c2, -, c6 are orbital elements.

If Ax _ 0, x _ y,z in equations (i), the path is not a simple

conic. However_ at any instant it may be regarded as a conic with vari-

able orbital elements. In fact, equations (6) are the solutions of equa-

tions (!) if the orbital elements Cl, c2, ., c6 are regarded as

variables.

This introduces the concept of the osculating orbit. Let an object

be moving in a perturbed path about a central body. An instantaneous

two-body orbit always exists tangent to the actual path at the point and

having a velocity in the orbit equal to that of the actual body. Such

tangent orbits are called the osculating orbits. The relations implicit

in this definition are used to derive the equations for the disturbed

orbit in terms of orbital elements. The three second-order differential

equations of equations (i) are transformed to six first-order simultaneous

differential equations involving orbital elements. Lagrangian brackets

are utilized to solve the set of simultaneous differential equations for

derivatives of the various orbital elements explicitly. The explicit

derivatives are the objective of this report.

As the first step in obtaining these derivatives, equations (6) are

differentiated regarding c13c2, -_ c6 as variables. The following

equations that apply to the actual path are obtained:

dx 8x _ _x dCk

d-_ : _+_.._ _ d t '

k=l

x * y,z (7a)

d2x

dt 2

¢ dck

k=-i

x -.y,z (to)

!

CO

0
_0
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Equations (i) may be introduced to eliminate (d2x/dt2), x _ y,z from

equations (7b). Then equations (7) may be written as

6

_-_x dCk
_x dx + = O, x _ y,z
_-_ dt /c_-_k dt

(Sa)

6

8x _x ZS_k dCkat
k=l

= Ax, x _ y,z (8b)

In the osculating orbit dCk/dt = 0 and Ax = O, so that equations

(8) become

8x dx O, x _ y,z (ga)

_ _x O, x _ y,z (gb)
_+ r3 =

Introducing the requirement that velocities in the actual path and

in the osculating orbit are equal, equations (9a) may be substituted into

equations (Sa); and similarly, because the acceleration in the osculating

orbit differs from that of the true orbit only by the disturbing acceler-

ation, equations (gb) may be substituted into equation (Sb) to give

6

k=l

x * y,z (lOa)

x -.y,z (lOb)

Equations (iO) are the resulting six first-order differential equations.

They are not adapted for computation because equations (6) are not explic-

itly available and because the derivatives of the orbital elements appear

simultaneously rather than explicitly. This difficulty is conveniently

removed by further manipulation. The following equations are written in
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a form convenient

+

for formulation in terms of Lagrangian brackets:

_x _x _

_- _- _
\k_l

8c k 8cj 8c k

_o
0
_o

8_. 8z 8 8_ = o (lla)

+ c_-_k_k-A c_'_j-__i ck
j=l,2, "•",6

The validity of equations (lla) is obvious because each term contains a

zero factor from equations (i0). Results of the operations shown may be

written as

6

E [Cj,Ck]_ k = Dcj

k=l

, j : i,2,- -,6 (lib)

where

[cj,ck] _x _ _ _x _ 3" _"
_z _ 3_ bz

+__-__
(i2)

and

_x _ _zDcj:_ _7%+_ +_z_v_, J:_,_,"

The brackets [cj,c k] are the Lagrangian brackets.

• .,6 (i_)
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General Formula for a Lagrangian Bracket

Previously, a general set of orbital elements has been used. Before

proceeding to evaluate the l_grangian brackets of equations (llb), it is

convenient to choose a specific set of independent orbital elements so as

not to complicate the analysis. The set chosen is not significant; for,

as will be shown in the RESULTS section, it is relatively simple to sub-

stitute any elements that may be desired. If there are chosen as the set

of orbital elements the semimajor axis a, eccentricity e, time of peri-

center passage tp_ argument of pericenter _, orbit inclination I, and

longitude of the ascending node _, the expression for the Lagrangian

bracket is

[s,q]= (s,q)
(_,-_/ka(l - e2)) +

+ (s,q)
(_,-vZpa(l- e2)cos I)

(s',q)

(i_)

where s and q are any of the orbital elements. The right-hand side

is expressed in Jacobian notation. Note that Is,s] = 0 and

Is,q] = -[q,s] from equation (12). The derivation of equation (14) is

given in appendix B. It results from geometric relations existing among

the instantaneous values of the orbital elements of any orbit. It will

be used to evaluate the Lagrangian brackets of equations (llb).

Evaluation of Lagrangian Brackets

A Lagrangian bracket appears in equations (lib) for each of the 36

combinations of the six chosen orbital elements. Evaluation from equa-

tion (14) shows six of the twelve nonzero brackets to be

_(-t_) _(-_/2a) = _ (15a)

rILa,tpj = - _tp 3a 2a 2

[a,o_] = - _-_c°_pa(l -_a e2) = - i_ _/_ _ e2 (m_b)

_ _a(l - e2)cos I = _ i_ _a[a,g] = - _-_ _a 2 cos, I _/_ - e2 (15c)

[e,_] = a_ aW'_a(1- e2)_ _-V_
-_ Be -/Z - $2

(ISd)



- e2)cosI -_ eW;
[e,_] = - _ _e ' _ cos I (15e)

8_ 8_a(l e2)cos I
[I,Q] = - _ _I = _a(l - e 2)sin I (15f)

By observing the property of the brackets that [s,q] = -[q,s], the values

of the remaining six nonzero brackets are apparent from equations (15).

Omitting all zero brackets, equations (llb) become

[a,tp]£p + [a,_]_ + [a,_]_ = D a (16a)

[e,_]&+ [e,n]_= De (16b)

[Z,n]5 = Dz (16o)

-[a, tp]& : Dtp (16d)

-[a,_]& - [e,c_]e : Dc_ (16e)

-[a,n]A- [e,n]&- [z,n]i= (16f)

!

O

Derivatives of Elements in Terms of Disturbing

Functions of Elements

Introducing the values obtained for the brackets in equations (15)

into equations (16) and solving the system for the derivatives give the

following form for the Lagrangian equations:

2a 2
(17a)

= - -_--Dtp

= a(l - e 2) #- e2_e htp - _a D (17b)
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: a(1 -e 2) De + 2a--zDa (lV::i)

O
od
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: £4_ - e2 cot I
e _ _a D e - D I (17e)_/_a(l- e2)

= nI (lVf)
sin I-,/_a(i - e_)

Disturbing Functions of Elements in Terms of

Components of Disturbing Acceleration

Prior to the integration of equations (17) it is desirable to express

the disturbing funcb_;ons Da, De, Dtp _ De0, D_, ani D I in more convenient

form.

If s is any of the elements a_ e_ tp_ m_ _ or i_ any of equa-

tions (IS) may be written as

bx _ bz
Ds : _ _ + _ _ +i_ (13a)

I% is necessary only to evaluate bx/bs, x _ y,z for each element in

order to obtain useful forms of equations (17) that may be integrated

(either formally or nmnerlcally). However, the equations will reduce to

a more convenient form if the Cartesian disturbing acceleration components

Ax_ Ay, A z are resolved into a new orthogonal set (fig. 2) as follows:

(i) a component normal to the orbital plane W, cos<tive when A z is

positive; (8) a component r_ormal to the radius a_od in the orbital plane

C_ positive when making an angle of less than n/8 with the d!rection

of motion; (3) a component along the radius R_ bositive when pointing

outward from the origin.

The analysis in append.ix C determines the disturbing functions Da,

De_ Dtp , D@, D_ and DI lid terms W_ C_ and R as shown in equations

(18).
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i - e2 3

Da = I + e cos v - _ e 2) (t - tp)e sin vlR

- I_a3( 1__ e2 ) (t - tp)(l + e cos v_C

(5+ e cos _)(sin v)CDe = (-a cos v)R + a + e cos

= - _ _ [(e sin v)R + (1 + e cos v)C]Dtp a(l - e2)

Do]= Cr

DI = Wr sin u

D2 = Cr cos I - Wr cos u sin I

where v is the true anomaly and u = v + _.

(18a)

(18b)

(18o)

(Is )

(1Be)

(18f)

bJ
!

0
[-0

P

RESULTS

Introduction of equations (18) into equations (17) yields

2ae _[e C]: -2 (sin v)R +
i r

$ = _ (sin v)R + e
r(l - e2)

a{[ 2 P c°s v - 3e _p_ (t - tp)sin v] R=7 r - e

+ (p + r) - r m/_ (t - tp C

_[ COS V R + sin v (
= -- -- i +

e e p)C -(p sin u cot I)W]

= r sin u

sin I

W

(19a)

(igb)

(19c)

(19d)

(ige)
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_ r cos u W (19f)

where p is _he semilatus rectL_. These results_ together with other

forms de2_:ved from them_ ate _ziven in table II.

O
Oa

!

Alternate Components of Disturbing Acceleration

Components of the disturbing accelerat:ion in ti_e orbital plane may

be alternately taken tangent to the path T and normal to the path N;

T is iJositive in the direction of motion_ and I{ is positive when di-

rected toward the _nterior of the orbit. Subssitution in terms of T

and N for C and R by introdacing expressions from table III gives

the following changes in the derivatives of equations (19):

: 1[.2 Sine v

tp =

: 2a2 I T (s0a)

;:g p

T + r__ije (2e + cos v + e 2 cos v)N - r<_ sin u cot I) "_4]

(2oo)

{7 -i [2r {_p- (eZ + e cOs v + 1)sinve2 e

- S(t - tp)(1 + e£ + 2e cos v_T + (r _ cos v)N} (20d)

where V is the velocity.

Elimination of (t - tp)

The quantity (t - tp) may be eliminated from equation (20d) by in-

troduci_g table I equations (I-96) and (1-97) for the cases e < i and

e > i_ respectively. The results for the two cases are

a _ fl__7_{_ + 6e + e2(e + cos v)] sin v{P = _ 1 + e cos v

-7/;: eS T+ , o < e < 1 (£1)
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where E is the eccentric anomaly_ and

tp = _ e2 1 + e cos

where F = -iE

orbit. Thus, F

imaginary in the case of the hyperbolic orbit.

identical to the result for e < l_ but with E

_/_ - e2 replaced by i_ee 2 - i.

e > i (2£)

in the hyperbolic orbit corresponds to E in the elliptic

is imaginary when an elliptic orbit exists_ and E is
The result for e > i is

replaced by iF and

D_
!

O
DO

The value for tp when e = i

quantity (i - e2) _ 0 when e _ i.

written as

is not directly evident as the

Equation (19c) for tp may be

Cp - P 2 cos v Se sin v (t - tO R
_(i - e2) + e cos v e

+ _si_ v 2 + e cosv. -- i + e cos v - 3(i + e cos v) _ (t - tp_C} (23)

Eliminating 6 (t - tp) from equation (23) with table I equation (I-95)

yields

2 __ 3e2sin£v
6p = p 2 cos v +

R(I - e2) + e cos v e (i - e2)(l + e cos v)

Jo v]Se sin v dv R +
i - e2 i + e cos

+

+ e cos

Se sin v 3(1 + e cos v)

i - e £ i - e £ /o"dv

i + e cos
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Using the relation

v cos v dv(1 + e cos v) 3

i

2(1 - e2) I_ sin vi + e cos v) 2

ol
O
oa

!
pq

+
(i + 2e2)sin v

(i - e2)(l + e cos v) dvi + e cOS
(2s)

to eliminate
dv

i + e cos v from equation (2<L) yields

sin v

V cos v dv(i + e cos v) 3

]
cos v ^I R

e(l + e cos v)

+ /0v(i + e cos v) cos v dv
(1 + e cos v)

Equation (26) is now defined at e = i, since

v cos v dv(i + cos v) 5

sin v i + 5 cos v + cos2v

5 (i + cos v) 3

Hence, the equation for t on a parabola is
P

5#(1 + cos v) 2 (i + 5 cos v + cos2v)sin C

+ 12- cos v- _ cos2v- 2 cosSv]R}

(26)

(27)
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Derivatives of Alternate Orbital Parameters

The element "p" may be used in place of the element "a" as a variable

of integration. Similarly, the pericenter radius rp may replace a or

p. As p, a, and rp are similar elements, the question of which to

select is determined by numerical and convenience considerations.

Semilatus rectum. - Taking the derivative of p = a(l - e2) yields

= &(l - e2) - 2ea@. Introducing expressions for _ and @ from equa-

tions (19a) and (19b) yields

p = 2r _ C (28)

or_ in terms of T and N,

P = 2P[ T +re(sinv)N]Vp
(29)

Pericenter radius. - The equation for radius of pericenter is

rp = p/(l + e), and its derivative is

i (_ - r e) (30)
rP l+e p

Introducing expressions for _ and @ from equations (29) and (20b) into

equation (30) and simplifying yield

i_ i - cos v T + (r sinv)N ] (31)rP = V rp i + e

Mean anomaly. - Also, it may be desirable bo use the mean anomaly M

in place of the element tp. Here, the distinction is significant in

that M is not an element and varies even on a two-body orbit. From the

familiar expressions M = n(t - tp) and n = _ in table I, the

derivatives become

= n(t - tp) + n - ntp

and

= - _ _a
(33)

!

F_
_a
0
_a
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where equation (20a) was used for in equation (33). Now,

-nip= - 6 £p

v l _a_3[l2--3(t- %) ?-_ _ - V _ e2 r(sin v)_ + rJ2-0T +
r cos v

when £ is taken from equation (20d).
P

Introducing equations (33) and (34) into equation (32) yields

- e2 [2(sin v)(_ + I)T + r c°s v N]M: n - V ae (3s)

It should be noted that M and M are both zero when e = i and that

reduces to its two-body value when the in-plane components of the

disturbing acceleration are zero.

True anomaly. - The orbital parameter v, true anomaly, may be used

as an alternate to either the element tp or the parameter M. From

table I equations (1-47), (1-18), and (1-24), Kepler's equation may be

written as

M : tan -I _ - e2 sin v - e _ - e2 sin v
e + cos v 1 + e cos v

(s6)

Taking derivatives in the disturbed orbit yields

_- e2 [ " ]: (1 + e cos v) 2 v(l - e2) - e (sin v)(2 + e cos v)
(sT)

Solving equation (57) for v and introducing equations (35) and (2Ob)

to eliminate M and e_ respectively, yield the result

 nv)?e+e  osv+co  r 2 Ve T Ve(l + e cos v) N (38)

As in the case of M (eq. (35)), it will be noted that equation (38) re-

duces to the two-body derivative expression when the in-plane components

of the perturbative acceleration are zero.
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Table IV is a qualitative summaryshowing how the componentsof the
disturbing acceleration affect the derivatives of the various orbital
elements and parameters.

Orbital Element Relations for a Circular Orbit

In a circular orbit the location of the pericenter is undefined.
Consequently_ the elements _ and t_ and the true and meananomalies
v and M, which are related to the location of the pericenter, are un-
defined. Thus, relations involving _, tp, v, and M take on an in-
determinate form. However_any perturbation having a componentin the
plane of the orbit will immediately establish the limiting values of _
tp, v_ and M in the circular orbit. The circular orbit expressions are
derived for the T_ N system of resolution of the in-plane disturbing
acceleration components. The derivatives are also given in terms of the
C_ R system in table II.

True anomaly. - Taking the table I equation (1-117) for

cos v = (p/r) - i 0
e = _, e = 0

COS V_

and applying L'Hospital's rule give

(rp - pr)/r £
COS V =

e

, e = 0 (sg)

Substituting for p from equation (29), for $ from equation (20b),

and for 9 from table I equation (I-80) [eq. (I-80) is also valid for

disturbed orbits] into equation (59) yields in the limit as e approaches

zero

2T
cos v = 2T cos v - N sin v' e = 0 (40)

Equation (iO) is valid if e = 0 and e _ O. The latter condition re-

quires that an in-plane component of the perturbing acceleration exists.

Solving for sin v and cos v from equation (40) yields

sin v = T N , e = 0 ($la)

!

0
_O

cos v = + 2T_ , e = 0 (41b)

#_T 2 + N 2
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C_
O
C_

!

where the upper sign gives the limiting value of the true anomaly for

leaving a circular orbit and the lower sign gives the limiting value

when entering a circular orbit. It can be seen from equations (%1) that,

if a perturbing force is arranged to force an initially elliptical orbit

through circular, the value of true anomaly will make a step change of

radians.

Ar%_tment of pericenter. - The argument of pericenter is determined

from table I equation (1-178):

gO= U - V

Time of pericenter passage. - In a circular orbit the time from

"pericenter/' t - tp, equals the arc length to "pericenter" divided by

the velocity; that is_

r

t - tp -- V V, e = 0 (42)

Derivatives of Orbital Parameters in a Circular Orbit

Samilatus rectum and semimajor axis. - Equations (29) and (20a) for

and _ reduce directly to the same expression when e = O:

r

5= 2V e= o (%3)

Eccentricity and radius of pericenter. - Using the limiting values
for sin v and cos v from equations (%1) in e_ations (20b) and (51)

for @ and 9p yields the following:

e = o (%s)

where again the upper signs give the limiting values of @ and 9p when

leaving a circular orbit and the lower signs are for entering a circular
orbit.

Argument of pericenter. - Equation (20c) may be rewritten to give

= _ T sin v + r_ N cos v + P (2 + e cos v)N - sin u cotP

(46)
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Substituting the following relations from table I

sin v = 7 (_7)

(¢8)

gives the following result in the first term of equation (46):

Applying L'Hospital's rule and using equations (20b), (29), (43), (47),

(48) and equations from table I and noting that _ = -N in the disturbed

orbit when e = O, it is found that

Limit - V 2 _6T 2 + N2 Vf_.'.- NT
e 0 e2 ' = 2-'r- N +

Thus, _ reduces to the following for a circular orbit:

= V[2r + N + V (sin u cot l)..], e = 04T2 + N2 4T2 + NZ (49)

Time of _er.icenter passage. - Equation (21) may be rewritten to

give

p _I_.2T sin v r v] eT sin v[5 p]
tp = V [e[l [ T 2" ÷ --pN cos + i - e 2 - e(e + cos v)

_ mE(m + 2e cosy + e_) m_

J
(5o)

Again, the limit of the first term of tp is

Limit _ e2 + -- N cos V2 [6T 2 + N2 _P =m_N

e _ 0 e 2r \4T2 + N 2/

t_
I

gO
0
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O
O_

!

A_

O,

_O
!

O

and £p for a circular orbit reduces to

i r(i - NT _- r_(6T 2 + N 2

p : _ + _tr_ +_) v_t_ + _. N + _vT), e = 0 (S1)

Mean anomaly. - Equation (35) may be written as

= n - _ - e2 /2(sin v)T + _P (1 - e2)N cos v

V L e

The limit of the indeterminate term in equation (52) is

(s2)

Limit

e-+O

2T sin v + _ (i - e2)N cos v

e +2r N\ Z_T_ 4.

2TN

_/&T 2 + N 2

and M for a circular orbit becomes

v _(GT2+_) +__:n-_+v%m2+
V_/4T 2 + N 2 _T 2 + N 2

(ss)

where the upper sign is for leaving a circular orbit and the lower sign

is for entering a circular orbit.

True anomaly. - Equation (S8) may be written as

ill (2 -- v)J r: - V T sin v + r N cos - -- (2 + e cos v)N + _-_
p Vp r 2

which yields in the limit as e approaches zero

_ = V N(2T2 + N£] TN - NT e = 0 (54)

2r V\a_T2 + N2/ 4T 2 + N2'
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A_f..iication of derivatives for circular orbits. - If the disturbing

force i_ a_F?iied Jn a constant direction relative to the velocity direc-

tion_ i c,may be noted that

even if the magnitude of the disturbing acceieratJon is varying. Thus_

if the direction of the disturbing acceleration is fixed relative to the

velocity, all terms involving N and T will vanish in equations (%0)

to (Sd). Similarly if the direction of the disturbing acceleration is

fixed relative _o the radial direction, all terms involving C and R

will vanish from the equations in table II.

The equations for circular orbits given in Lhe preceding sections

and in table II are completely valid only for circular orbits. However,

certain of the equations will be found to be sufficiently accurate for

near-circular orbits and can be used as the basis of approximate equa-

tions.

td
!

tO
O

CONCLUDING REMARKS

All the results derived herein for the perturbation derivatives of

the various orbital elements and parameters are listed in table !I.

Table I!I contains expressions for the orthogonal system of components

C, R, and W in terms of the Cartesian components of the disturbing

acceleration Ax, _/, A z in the OX, OY, OZ system. It also contains

equations interrelating the C, R and T, N systems of the in-plane

components of the disturbing acceleration. Table I is a collection of

various forms of the two-body equations that also apply to the osculating

orbit.

As illustrated for _, 90, M, and 9, perturbation derivatives of

other alternate elements and parameters may be derived from the expres-

sions in tables I_ II, and III. Other integration variables that may

be useft_ for the solution of problems in orbital mechanics are suggested

in references 2, S_ and 4.

Selection of the best set of orbital elements or parameters for a

0articular type of special perturbation problem in orbital mechanics de-

pends on the nature of the problem. However_ it is expected that examina-

tion of the derivatives given herein will help to indicate which param-

eters should be used for a specific problem.

Lewis Research Center

National Aeronautics and Space Administration

Cleveiand_ Ohio, August SO, 1961
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APPENDIXA

OJ
O
OJ
H
!

Ax_Ay,Az

a

b

C

C

D
S

E

Eg

e

F

G

H

h

J

SYMBOLS

The following symbols are used in this report:

component of disturbing acceleration

semimajor axis of conic section, negative in hyperbolic case

semiminor axis of conic section

pertLtrbative acceleration in circumferential direction

constant of integration

disturbing acceleration function for element s,
8x _z

_i + AzAx _ + _ :Is _s

eccentric anomaly

energy per unit mass

eccentricity

used in hyperbolic orbits to correspond to eccentric anomaly

in elliptic orbits_ F = -iE

component term of disturbing acceleration includes forces

due to all except gravitating bodies not located at prob-

lem origin

a3/2(E - e sin E)

i _i/2al/2(3 E + e sin E)
2

angular momentmm per unit mass equals twice the rate of

description of area in orbital plane

orbital plane inclination

unit imaginary nttmber_ _--_

i _x BY_+Y_
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k2

M

M i

M o

m

N

n

P

P

Q,S

q,s

R

Rg

rb

1

r
P

r s

T

t

tp

U,U I

u

gravitational constant

mean anomaly

gravitating body mass

gravitating body mass at problem origin

object mass

perturbative acceleration in orbital plane in direction

normal to velocity, positive when directed toward interior

of orbit

mean angular orbital motion of object, 2z/P

orbital period

semilatus rectum, a(l - e2)

denote functions defined for convenience

any pair of orbital elements

perturbative acceleration in radial direction, positive
outward

range on surface of sphere intersected by an elliptical

orbit

radius from origin to object

radius from origin to disturbing body

perieenter radius, the minimum distance from central body

to orbit

radius of sphere

perturbative acceleration in direction of velocity

time

time of pericenter

complex variables, x + iy, xI + iyI

argument of latitude, angle measured from ascending node to

object radius in the direction of motion, u = v +

!

O
fo
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V

V I

v

W

X,Y

x,y,z

_2,_2,Y2

A

E

05

2
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object velocity or complex variable, x - iy

complex variable, xI - iyI

true anomaly, angle measured from pericenter to object radius

in the direction of motion

perturbative acceleration normal tc orbital plane_ positive
in the direction of axis OZ

denote object coordinates in the OX3, OY 3 axis system

where OXS coincides with pericenter radius and OY 3 lies

in orbital plane (see fig. 2)

denote object coordinates in the OX, OY_ OZ Cartesian

system (seG fig. i)

direction cosines of the OX 3 axis referred to the OX, OY_

and OZ axes, respectively

direction cosines of the OY 3 axes referred to the OX, OY,

and OZ axes, respectively

distance from object to any perturbing gravitating body

natural logarithm base

gravitational constant equals acceleration of object at unit

distance from M o due to Mo, _ = k2(M o + m)

used in hyperbolic orbits to correspond to n in elliptic

orbits, v = -in

path angle_ angle between circumferential and velocity di-

rections, positive clockwise

argument of pericenter_ angle measured from ascending node

to pericenter radius in direction of motion

longitude of ascending node

Subscripts:

a apocenter conditions in table I; elsewhere, disturbing func-

tion of semimajor axis

e disturbing function of e
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I

i=l_ 2_" " "jn

j=l, 2, ". ",6

k=l, 2, " •"_6

P

S

tp

x-_, z

x_y_z

1,2_3

Superscript:

disturbing function of I

disturbing gravitating body number

indicates jth equation of a set

indicates kth orbital element

pericenter conditions

conditions of spherical surface

disturbing function of t
P

indicates extension of equations in x to a system in-

cluding y and z

components taken about or along an axis

disturbing function of

coordinate system and coordinates in them

disturbing function of

!

C>

indicates derivative with respect to time



25

APPENDIXB

OJ
O
OJ

!

WHITTAKER 'S D_IVATION OF THE GENERAL FORMULA

FOR A LAGRANGIAN BRACKET

The following development is applicable to _he equations of any

osculating orbit. It is similar to that given in article 5-16 of Smart

(ref. i).

Let s and q be any two of the six orbital elements and x, y, z

be the object's coordinates; then equation (12) may be written as a sum

of Jacobians,

(x,_) (y,#) (z,_)
Is,q] = - -A-T+-C TTT+TTTTT (BI)

where, by definition,

bx _x bx bx

and so forth, for the other Jacobians. The objective is to transform

equation (BI) into an expression of the same fo_a but involving only ex-

plicit functions of the orbital elements. Define

and

bx _s bzS=x_+_ +_

Q = # bx _ bT.

(B2)

Then,

bs bQ
[s,q] = _ - (B3)

Let the OX, OY_ OZ axis system in figure i be fixed to some reference

astronomical line and plane such as the mean equinox and equator of

1950.0. The orbit plane is projected on the celestial sphere. The

equatorial longitude of the ascending equatorial node referred to the

vernal equinox is then denoted by 2, and the inclination of the orbital

plane to the equator is I. Rotate 0X and 0Y about 0Z through the

angle 2 to obtain the axis system OXI, OYI, OZ I. Coordinates of the
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object in the OX, OY, OZ system (x,y,z) are given in terms of those in
the OXI, OYI, OZI system (xl,Yl,Z I) by

x = xI cos 2 - Yl sin 2 l

]y = xI sin 2 + Yl cos 2

Z = Z 1

It is convenient to introduce complex variables by the following defini-

tions:

U = x + iy, V = x - iy

and ib (BS)
U I = xI + iYl, V I = x I - iyI

where i = _/_. Then, by using equations (B4) with the definitions in

equations (BS), it may be shown that

U = Ul(COS 2 + i sin 2) (B6a)

V = Vl(COS 2 - i sin 2) (B6b)

!

0
ro

or

u : Nit m (BTa)

V = Vle-i2 (B7b)

The time derivative of equation (B7a) and the partial derivative of equa-

tion (B7b) with respect to s are, respectively,

0 = UI ei_ and _s e-ia " iVl (B8)

Multiply equations (B8) together to obtain

_V _Vl _q

0 _s = IJl _s - iOlVl _ss (Bg)
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Taking the real parts of equation (Bg) yields

Cq
O
Cq

!

!

O

bx _ bXk bYl b_ (B10 )

But it is seen from equations (I-55) and (I-4-4) of the two-body orbital

relations in table I that Xl# I - ily I = h cos I. which is _he projection

on the OX I - OY I plane or twice the rate of description of area in the

orbit plane. Hence, from equations (B2) and (BIO)

as

OX I

ing object coordinates (x2,Y2,Z2), so that the OX 2 - OY 2

with the orbit plane. Then_ by analogy with equation (BIO

bXl byl bZl ba (Bll)
S = i157-s +#l _--s+ £157-s+ h cos Z 57

z = zI from equation (B6). Now, rotate the OY I - OZ I plane about

through the angle ! to obtain the axis system OX2, OY2, OZ 2 hay-

plane coincides

bY I bz I bY 8 bz 2

#l 57-_+ £i Y_-s= 92 s_-+ £2 _ + (i:_Y2- Y_2

But, since xI = x 2 and z 2 _ O, equations (BII) and (BI2

to yield

Now rotate the

to obtain the axis system OXs, OY S

so that OX 5 lies on the pericenter.

(BIO) it follows that

bx2 _Y2 bx bY b_
_ sy_ + y_ _= _ _+_ _+ (_ - _)

But XY - YX = h; thus, use of equations (BIS) and (BI4-) yields

_-_ _s + h _ss + h cos I

_s

_ay be used

s = iz _+#_ _+ h cos X 57

OX 2 - OY 2 plane in the orbital Ltlane through the angle

having doject coordinates (X,Y)

Again, by analogy with equation

(BI4)

(_l_)
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Let
, o_j_s;then substitutions from table i equat:ions
OS

(I-z_), (I-lSZ),(I-zse,),a_a (I-k05)may be in_roduo_ to obtain

J-i: a2 _s_E(1 - e2 cosZE) + a(sin E)(1 - e cos E)(e _s_a+ a _s)_e(BI6)

....Jhere E is the eccentric anomaly.

The time derivative of Kepler's equation (eqs. (!-_7) and (I-S2))

is

i(l - e cos E) : _ = _i/2a-(3/2)

where n is the mean anglular motion in the orbit. Eliminate

equation (BI6) using equation (BIT) to obtain

(roT)

i in

J : bl/2[ al/2(l + e c°s E) _Ea-(1/8)e_s+ sin E _a al/2 _seI+ sin E

which can be written as

_ _a
1 al/2(i _ _E 3 a_(i/2)( E _ e sin E) _sj= _z/_ _ e cosE) _-y

_a
+ al/2(3 + e cos E) _s_E + a-(1/2)(3E + e sin E) _-_

+ aI/2 sin E _s 1

+ e sin E)]

(BI8)

b_
!

DO

O
tO

1
where H = _ _l/2al/2(SE + e sin E) and

G = aS/2(E - e sin E) = naS/2(t - tp) = bl/2(t - tp).

1/2

Thus,

(BIg)
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Introduce equations (BI.q) _md(BIg) into equation (BI5) to obtain

S = _ + + h + h cos I (B2Oa)2a ,:is Y_ _ _ss

A similar derivation will ;_how that Q is given by

o _ _ _ Sa
o_ Q = - _ + + h + h cos I (B£Ob)

!
_q

Using equations (BZO), equation (BS) for Lagrange's brackets may now be
written as

[s,q] = 7s (-to) _(- _a) - _s (- _$_ __aa/_--Oq(-t"o).+ _.'__q - _-ss_qSt0 Sh _h $co

a_ a(h cos i) _(h cos Z) S_ (B21)
+ 8s aq 8s Y_q

Using Jacobian notation, the general expression :?or a Lagrangian bracket

as obtained by rewriting eluation (B21) is

: s,q)
(_o,h) (2,h cos I)

+ 777_- + (;_,q) (B22)

Substitution of h = #_a(l - e£) into equation (B22) gives the expres-

sion from which the Lagrangian brackets will be evaluated for the chosen
elements

+
(_,q) + (s,q)

COS



APPENDIX C

DISTUP_ING FUNCTIONS OF TKE E_TS IN TERMS OF

COMPONEh_fS OF T_ DISTURBING ACCELERATION

By the application of spherical trigonometry it is seen that the

components Ax; %_ A z of the disturbing acceleration referred to OX_

OY, and OZ in figure i are given in terms of W, C, and R by

Ax = R(_ I cos v + _2 sin v) + C(e 2 cos v - _i sin v) + W sin _ sin I

(Cla)

% : R(_ I cos v + _2 sin v) + C(_ 2 cos v - _i sin v) - W cos _ sin I

(Clb)

A z = R(_ i cos v + _2 sin v) + C(Y 2 cos v - _i sin v) + W cos I

(clo)

where

_i = cos _ cos _ - sin _ sin _ cos I

_2 = -sin _ cos _ - cos _ sin _ cos I

_i = cos _ sin _ + sin _ cos _ cos I

_2 = -sin _ sin _ + cos _ cos _ cos I

Yi = sin _ sin I

YZ = cos _ sin I

(c2)

Geometrically_ _I' _i' _i are the direction cosines of the pericenter

radius, and _2' 52' ¥2 are the direction cosines of the circumferential

direction at pericenter referred to 0X, 0Y, 0Z, respectively.

To obtain _x/_s, x _ y_z where s is any of the orbital elements,

the coordinates of the object must be expressed in terms of the orbital

elements. The (x,y,z) coordinates in the system OX, 0Y_ 0Z "may be ex-

pressed in terms of the orbital elements and true anomaly v as

!

P

O
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OJ
O
OG

I

B_

a(1 - e2)
x = i + e cos v (_i cos v + _2 sin v) (C3a)

a(l - e2) (_i cos v + _2 sin v)Y = i + e cos v (C3b)

a(l - e2) (TI cos v + T2 sin v) (C3c)
Z=l+e cos v

when equations (I-140), (I-147), (I-154), (I-72), and (I-i04) from table

I are used.

Determination of Da, De, Dtp

From equations (C2) it is seen that the derivatives of _, _, and

T with respect to the elements a, e, and tp are zero. Equations

(C5) are not explicit in terms of the chosen set of orbital elements,

for sin v and cos v are seen to be functions of a, e, and tp by

the following form of Kepler's equation obtained from equations (!-18),

(1-24), (I-45), (I-47), and (1-52) of table I:

(_el - e2 sin v> _ - e2 sin v(t - tp)_I/2a -3/2 = tan-i + cos v - e I + e cos v

(c4)

Because of the transcendental form of equation (C4), explicit expressions

for sin v and cos v in terms of a, e, and t cannot be obtained.
P

However, the required partial derivatives may be obtained according to

the following relations if v is regarded as an _ixiliary variable:

7s-- +  Ys' x y,z (c5)

for s equal to a, e, tp _#here [_x/_s] in brackets indicates that the
derivative is now taken only so far as s appears explicitly in equa-

tions (C5). The derivatives from equations (C5) are

>]
_v = (i + e cos v) 2 i sin v - _2(e + cos v ,

x,_ _ y,_; z,T

(c6)

[_a] i - e2= i + e cos v (_i cos v + _2 sin v), x,_ _ y,_; z,T (C7)
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[_eX]= a[2e + (cos v)(l + e2)]- (z + e co_ v)_ (_z cos v + _2 sin v),

X -_ y_z

and from equation (C4) the derivatives are

by s _/ _ (1 + e cos v)£(t -
tp)

_'-a= - [ _a5(1 - e2) 3

_v sin v (2 + e cos v)

x,_ _ y_@; z,Y

(o8)

(c9)

(clo)

(011)

!
t--
DC
C

8v _/_ _ (1 + v) 2t_p= - 5(i e2)5 e cos

Combining equations (06) to (C12) according to equation (C5) yields

Sx i - e2

_ = i + e cos v (_i cos v + _2 sin v)

(cz2)

2 3(i _ e2) (t- tp)[_ I sin v- _2(e + cos v)],

x,m --"y,_; z,y (CiSa)

a[2e + (COS v)(i + e2_

(i + e cos v) 2 (_i cos v + _2 sin v)

- a sin v
(i + e cos v) 2 i sin v - cos v ,

x,c_ _ y,_; z,y (ClSb)

_p = a(l - e_) i - _2(e cos ,

(cl3o)
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O

The desired results for Da_ De_ and Dtp are obtained by co_ining

equations (CI) with equations (Cl3a), (Cl3b)_ and (C13c), respectively_

according bo equation (iSa). Note that the following common factors in

the process have the values shown:

Coefficients of terms containing R:

(_1 cos v +c_ 2 sin v) 2 + (_1 cos v+_ 2 sin v) 2 + ('F 1 cos v+Y 2 sin v) 2 : 1

(_l cosy +,_ sinv)[_ l sin v- _2(e+ cos v)]

I_oo__+_ _ _I[_s_n_-_I_+co__÷

(YI cos v + Y2 sin v)lY I sin v - Y2(e + cos v)J =-e sin v
+

Coefficienbs of terms containing C:

(_ cos v - _i sin v)(o_lcos v + _2 si_ v)

+ (_2 cos v - _i sin v)(@ I cos v + _2 sin v)

+ (r2 cos v -_l sln v)(rL cos v +w 2 sin v) = o

(_2 c°sv-_l sin v)[_ l sLnv-_2(e + cos v)]_

+I_cosv-_ _ _I[__ _-_I_+cosv_]

+ (Y2 cos v- YI sin v)[_ I sin v Y2(e + cos v_ =-(i + e cos v)

Coefficients of terms containing W:

(_i cos v + _2 sin v)sin _ sin I - cos _i sin I

(_i cos v + _2 sin v) + (_i cos v + r 2 sin v)cos I = 0

Fml sin v - m2(e + cos v)] sin _ sin I - cos _ sin I
L

[#i sin v- #2(e + cos v)] + [¥i sin v- Y2(e + cos v) l cos I = 0
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The simplified results then are obtained as

[ I - e Z S _ b (t - tp)e sin v]RDa : i + e cos v - _ aS(l _ e 2)

aS(l - e £)
t0)(I + e cos v_C

D e = (-a cos v)R + a(sin v + e cos

C14

CIS

°

PO

o
po

I

:- _I _ [(e sin v)R + (1 + e cos v)C]
Dtp a(1 - e2)

C16

Determination of De, D_, D I

The disturbing functions of _, _, and I are obtained by combining

the derivatives of equations (CS) with equations (CI) according to equa-

tion (ISa) after equations (C2) are used to eliminate _, 5, and y in

equations (Ci) and (CS). As this work is rather long but very direct, it

is omitted. Results are:

De : Cr (ClT)

D I : Wr sin u (C18)

D_ = Cr cos I - Wr cos u sin I (ClO)
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TABLE I. - E_UATIONS FOR THE TW0-BODY ORBIT

(a) Classification of orbits a

Type of

orbit

Circle

Ellipse

Degenerate

ellipse

Parabola

Degenerate

parabola

Hyperbola

Degenerate

hyperbola

Energy_

Eg

Eg = -_/2r

<0

<0

= 0

= 0

>0

>0

Angular

moh_ent u£1 _

h

h = rV

Jo

= 0

_0

:0

_0

= 0

Eccentricity_

e

e= 0

<i

: i

= i

= i

>i

: i

Semimajor

axis,

a

a = r

>0

>0

O0

<0

<0

Semilatus

rectum_

P

p ---- r

>0

: 0

>0

:0

>0

: o

aThe degenerate conics included for completeness are straight

lines.

The two-body equations describing motion on a conic section may be

written in myriad forms. _11_efollowing particularly useftCL equations
have been selected for tabulation without derivation.

It is asst_ed that e and r are never negative. Special cases

and restrictions necessary for real equations are indicated, it is

also obvious that many of the equations become indeterminate or un-

bounded for certain conditions. (Symbols are defined in appendix A.)
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I-l:

I-2:

I-3:

I-4:

I-5:

I-6:

I-7:

I-8:

I-9:

I-i0:

I-ll:

1-12:

1-13:

1-14:

1-15:

1-16:

1-17:

1-18:

TABLE I. - Continued. EQUATIONS FOR THE TWO-BODY ORBIT

(b) Two-body equations

SemimaJor axis

P

i - e 2

= r(1 + e cos v)

1 - e 2

r

i - e cos E'

r

I - e -_osh F'

h 2

_(i - e 2)

1

(Z/r)- (V2/_)

=6_ e<l

= rp + r a
2

e<l

e>l

Semiminor axis

Eccentricity

= -_--_

r a - rp

ra + rp

Eccentric anomaly

E= iF

F = -iE

- sin ve _

sin E = i + e cos v J
e<l

1-19:

1-20:

Eccentric anomaly (concluded)

r sin v
= ,3 e<l

_ r sin v > i

sinh F = _ _ e

e + cos v

1-21: cos E = 1 + e cos v _ e < 1

1-22: = _ cos v + e, e < i
a

1-23: cosh F = _ cos v + e, e > i
a

- sin ve E
1-24: tan E = , e < 1

e + cos v

1-25:

1-261

tan E= -_l__e e tan _. e <I

F _e - 1 v

tanh _ = _e---_ tan _, e > i

Energy per unit mass

V _

1-27: Eg = -_ -

I-zs: _--(i- _2)
= - Zp

_-29: = - 2-_

1-30:

1-31:

1-32:

1-33:

1-34:

1-35:

1-36:

1-37:

1-38:

1-39:

1-40:

1-41:

= -_-_, e_O

Angular momentum per unit mass3 or twice

rate of description of area

h x = y_ - z_

hy = z_ - x_

hz = _ - y_

h Z = h_ +h_+ h_

= r4_ 2

= _a(l - ez)

= _r_ e = 0

h=hz, I=0=_

= rpVp

= rV cos

I

DO
0
CO
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¢,,]
0
0.]

!

I-4Z:

I-4Z:

I-¢4:

!-45_

1-46:

I-%7:

1-48:

1-49:

TABLE I. - Con<inued. EQUATIONS FOR T_E _O-BODY ORBIT

(h) Continued. TwD-body equations

Orbital inclination

h 2 + 2
tan I = _, 0 < I <

h z

h 2 2
sin I =

h

cos I hz
h

Mean anomaly

M = n(t - tp), e < 1

= _(t- b), _ > i

= E - e sin E_ e < i

= -F + e sinh F_ e > i

Mean angular motion

M

I-S0: n = _, e <" 1

Z-51: 2_
=_-, e<l

1-52: = 6 e < i

1-53: = V_ (i - e2) 3,

1-54: v = _ (e2 - i) Z,

1-55: = -in

1-56:

1-57:

1-58:

1-59:

1-60:

1-611

1-62_

1-65:

e<l

e> 1

S emilatus rectum

p = a(l - e2)

= r(l + e cos v)

=h2/_

_2/_

--_-_ (I + e_ + Z_ cos v)
V z

r(l - eZ)
= 1 - e cos E" e < 1

= Z(_/r)

= _n 2 (I - eZ), e < i

I-_4:

1-65!

1-66:

1-67:

Semil_*us rect'_un (concluded)

2rpr a

rp + r a

= r(l + cos v), e = i

l-g8:

1-69:

Period

P = -n-' e<l

= _, e <1

Rsd/1_s

1-70: r , --13
= i + e COS v

1-71Z = _x 2 + y2 + z2

1-72! a(! - e 2)
i + e cos v

1-75: = a(l - e cos E)3

1-74t = a(l - e cosh F),

1-75. = rg(l + tan 2 _),

1-76! = p, e = 0

1-77! r = V sin _

1-78:
r

1-79: x_ + 3_
r

1-80: = _ e sin v

1-81: "_ _e cos v
r _

e<l

e>

e=l

I=0=g

1-82:

1-83!

1-84*

I-SS:

Radius at perlcenter

rp _
1 + e

2a - r a

a(l - e)

P
=_, e = i

1-86:

I-_7:

1-88:

Padlus at apocenter

ra = _-_2_._P
1 - e

= 2a - r_

= a(i + e)
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°

TABLE !. - Continued. EQUATIONS FOR THE TWO-BODY ORBIT

(b) Continued. Two-body equations

1-91_

1-92:

I-9_:

I- 94 :

1-95"

I-9£I

1-97:

1-98r

1-99:

l-lO0:

I-lOl:

I-i02:

I-IOZ:

Range (of ballistic missile) on sphere

of radlu_ rs intersected by an

elliptical orbit

Eg = 2rs(_ - Vs), 0 < v s <

M < 1
tp = t -n e

E- e sine
= t - e<l

n

F - e sinh F
= t + , e> 1

v

= t- dv

{1 + e cos v)2

= t - I + e cos v

= t - -- -

i - e 2

= t - _

i- e 2 _e2 1

i- e 2

i - e 2

_ i [(2 + e°s v) sin= t - _ (i + cos v) 2

=t - r2_L___ A__
2_/- rV 2

= t - r2 _- P

2_ - rV 2 _r(rV 2 _ 2_)

=t -_-_ - + e=l

Time of pericenter passage

%
e sin v

I + e cos v)

e sin v vli + e cos

e<l

e>l

( l_ee _) e sinv_
tan_ I i - e tan - i + e cos ' e < i

{ e_ + _/_ - i tan v/2__ e sin v v)__ ,og\W-c7 - -vm _ tan_Iz] _ ..... '

J_ e=l

tan-l[V_2r - h2(2_ - rV2) + _/_(W - rV2)]_rV_) L r_/_ 7 rV 2

e>l

, e<l

2.+ %/-r(rV2- _) #W2r- h2(2p- rV2)l _r } e 1

logl -- - _ >

Lr_ _ d;(rVZ- _)_Vl_2r - h2(21/-rV2)J

t4
!

0o
0
CO
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TABLE I. - Continued. EQUATIONS FOR THE TWO-BODY ORBIT

(b ', Continued. Two-body equations

O
04

! I-i04;

I-lOS:

I-I06:

I-i07:

I-i08:

I-i09:

I-llO:

I-l/J_:

I-i12:

I-IIZ:

!-i14:

I-IIS:

I-i16:

I-i17 :

1-118:

1-119:

1-120:

Argument of latitude (same as polar angle)

U = V + _D

Y
tan

u = _, I = 0 =
n

z sin I + (y cos _ - x sin n)cos I

x cos _ + y sin

r 2

V cos
=__

True anomaly

V = U - 6D

c_ r_

tan _ = p T r

hr_

h 2 - _r

h 2 - _r

°

sin v =

= _- e 2 sin E

1 - e cos E
e<l

- _ _ - e 2 sin E,
r

e<l

-_e Z - 1 sinh F
1 - e cosh F

e>l

cos E - e

1 - e cos E 3
e<l

a (cos E - e), e < i=7

cosh F - e

i - e cosh F' e > i

1-121:

1-122:

1-125z

1-124:

I-IZ5:

1-126:

1-127:

1-128:

X-129:

1-130:

1-131:

1-132:

1-133:

1-134:

1-13S:

1-136:

1-137:

1-138:

1-139:

True anomaly (concluded)

v 41_ -_ tan_-, e < itan _ = _-e- e

_+ 1 tanh F, e>l= _7-7-Y-1

tan v = Y/X

= h/r 2

V cos

r

Velocity

V 2 = _2 + _2 + {2

= _2 + r2_2

= _2 + r2_2

= ._2 + _p

r 2

= _-(i+ e2 + 2e cos v)
P

=r' e= 0

ra 2_

rp r a + rp

rp 2_

ra ra + rp
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TABLE I. - Continued. EQUATIONS FOR THE TW0-BODY ORBIT

(b) Continued. Two-body equations

p

I-i¢01

!-l&l :

1-142:

I-l_$:

!-!44:

1-145 :

1-146 :

1-147:

1-148 :

1-149:

1-150 :

1-151 :

1-152t

I-IS3:

1-15¢:

1-155:

1-156 :

1-157:

1-158:

1-159:

1-160_

1-161:

1-162:

1-163:

1-164!

1-165 :

Rectangular coordinates

x = r(cos u cos _ - sin u sin _ cos I)

= r COS u3 I = 0 =

X = r cos v

= x(cos e cos _ - sin to sin _ cos I) + y(cos to sin _ + sin to cos _ cos I) + z sin 0o sin I

e<l

e> 1

= a(cos E - e),

= a(cosh F - e)_

e= i

y = r(cos u sin _ + sin u cos _ cos I)

= r sin u, I = 0 =

Y = r sin v

= -x(sin to cos _ + cos to sin _ cos I) - y(sln to sin _ - cos to cos _ cos I) + y cos to sin I

= a_ - e 2 sin E, e < 1

= -a_e 2 - 1 slnh F, e > I

= 2rp tan _, e = i

z = r sin u sin I

Velocity components

cos I(e cos to + cos u) + cos n(e sin to + sin u_

I = 0 =

= - _ sin v

= -aE sin E, e < 1

= 8_ sinh F, e > i

= _ (ecose+ cosu), I = 0 = n

= _(e+cosv)

= a_ - e2 E cos E, e < 1

= -a_ - 1 9 cosh F, e > 1

= _p sin I(e cos co + cos u)

n cos I(e cos to + cos u) - sin _(e sin _ + sin u_

t_
!

_O
O
D3
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TABLE I. - Concluded. EQUATIONS FOR THE TWO-BODY ORBIT

(b) Concluded. Two-body equations

o

I

_O _

¢

o

1-166:

1-167:

1-168:

1-169:

1-170:

1-1712

1-172:

1-173:

1-17_:

1-175:

1-176:

1-177:

1-178:

1-179:

Path angle

tan _ =

r_

x_+_+ z"
h

e sin v
=

i + e COS V

er
- sin v

P

sin _ =-
V

x& + _ + z{
rV

e sin v

V1 + e 2 + 2e cos v

r_
COS _ =__

V

h

= rV

1 + e cos v

VI + e 2 + 2e cos v

Argument of pericenter

tD=il- V

Ascending node

h x

tan _ =--

h X

sin

cos _ - -h_

_x + h 2g
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TABLE II. - DERIVATIVES OF ORBITAL ELEMENTS AND PARAMETERS a

(a) Time derivatives of orbital elements due to

perturbations

Semilatus rectum

P = 12r_--P_)C

r
= 2_T; e=O

r
=2_C, e=O

Eccentricity

= V[2(e + cos v)T - (r sin v)N]

= -+7 T2 + N2' e = 0

_ + _I_4c2 + R2, e = 0
V

Argument of pericenter

_ = _Isi-_v(1 + p)C - (c--_-_)R- ({ sin u cot T)W 1, e _ 0

; 2-"_ - 4:C2 + R 2-_ C2 + R2 + (sin u cot T) 3 e ; 0

e¢O

i

o

aTN - NT = 0 if T/N is constant, and CR - RC = 0 if C/R is constant.

However, T/N and C/R are never both constant at once.
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TABLE II. - Continued. DEP_VATIVFS OF ORBITAL ELEMENTS AND PARAMETERS

(a) Continued. Time derivatives of orbital elements due to

perturbations

os
O
o_

!

Time of pericenter

+ Cp _ si_----_v(1 + _)- 3(t- tp)_IC13

=-- sin v) - cos - 3

0¢e¢i

O_e_l

O<e<l

= a _fl _--_[/e + 3e + e2(e + c°s V))sin v - 3 P _ _ 1/?----__],E , T
V 1 + e cos _ ¥_ - _-J

+ (a_ cos v) N), 0 < e < 1

The results for tp for e > i are identical to the preceding results for

0 < e < i, but with E replaced by iF and _/_ - e Z replaced by i_/_ - I.

tP--s_(l+ cos_)2 (si_v)(oos?-_+ _ oos_ + n]c

V(l + cos v)

....._ _ + _ ÷_ +_\-_ +_,q'

1 r [{7C2 + 2R2_ R vC] r{RC - CRh

co 2v+Tcos + /sl v] vl }, o 15(i + COS V) T + (COS =

e-- 0

e=O
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TABLE If. - Continued. DERIVATIVES OF ORBITAL EL_4ENTS AND PARAMETERS

(a) Concluded- Time derivatives of orbital elements due to

perturbations

Ascending node

= sin W, I _ 0

Inclination

osu) 
Semimajor axis

1__e _Le sin + \r/j

2r
=--C, e=O

e=O

Radius of pericenter

rP = ___._e_il_.{_z'p.J-_p [e sin2v + 2(1- cos v)]C- (sin-v')R}

2 T + (r sin v)Nl

G
1 rp

1 cos .v.

V i + e J

r( _ )V 2C • &C2 + R2----" 3 e = 0

: _r(_ _W_ +_),
V

e=O

t_
I

0
co
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C_

TABLE II. - Concluded. DERIVATIVES OF ORBITAL ELEM]KNTS AND PARAMETERS

(b) Time derivatives of orbital parameters dT_e to both

orbital motion <.ridperturbations

O

I

Mean anomaly

sin v(l + p)Cl'e
O< e_l

O<e_l

The results for M for e > i are identical to the preceding results

for 0 < e _ i, but with n replaced by iv and _ - e2 replaced

by i_e 2 - i.

.M: n - V + N{_CT2 + N___

_-_ V_T2 + _2] -+

2TN

VV4T Z + N 2
4T 2 + N2'

e= 0

= n

2rV _<_C2 + R9'] V V 4CZ + R2 14C2 + R2/

e=0

True anomaly

: r 2 + e

v _2 + _] ___
- + - "+"

e=O

=_ + e=O
C2 + R .iC 2 +
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TABLE III. - COMPONENTS OF THE DISTUEBING ACCELERATION

R = Ax(COS u cOB 2 - sin u sin 2 cos I)

+ Ay(COS u sin 2 + sin u cos 2 cos I) + A z sin u sin I

C = Ax(- sin u cos 2 - cos u sin 2 cos I)

+ Ay(- sin u sin 2 + cos u cos _ cos I) + A z cos u sin I

W = A x sin 2 sin I - Ay cos 2 sin I + A z cos I

T = (! + e2 + 2e cos v) -(I/2) [(i + e cos v)C + (e sin v)R]

i ( c ÷--V

=C_ e=0

R 2

T= C +_-, e=0

N = (1 + e2 + 2e cos v)-(i/2) [(e sin v)C - (i + e cos v)R]

= _ " r

= -R_ e = 0

= CR-_- - R, e=0

C = (i + e2 + 2e cos v)-(i/2)[l + e cos v)T + (e sin v)N]

=V T+

= --_-, e= 0

R = (I + e2 + 2e cos v)-(i/2)[(e sin v)T - (i + e cos v)IT]

---- V - r

RT °
=-_--N, e=0

!

['O

o
PO
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0

H
I

In-plane component

of disturbing

acceleration--

Y_
o

/CD-7Si9/

Per!center

X_

Figure 2. Diagram in orbital olane showing resolution

of in-plane disturLing acceleration into radial (R)

and circumferential (C)_ or tangential (T) and normal

(N) systems.

NASA-Langley, 1962 E-1202


